
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5744 222

Allocation of Phase-Based Scheduler for

MapReduce Job Scheduling

Suryakant S. Bhalke

Department of Computer Engineering, JSPM‟s Imperial College of Engineering & Research, Wagholi, Pune, India

Abstract: Hadoop MapReduce is effective user interface design classic for large scale data handling. MapReduce has

two levels: Task-level and Phase level. In existing system, that focuses on scheduling at task level which tasks can have

changing resource requirements. There are some difficult to efficiently apply accessible resources to reduce job

implementation time. To report this limitation, this project proposes a Phase-Based Scheduler. Map Reduce which

allocates resource information about status of every Phase the phase-based to executed job scheduling. The job

scheduling of phase based is executed by the Master Node, which handle & service lots of list of jobs in the system.

Each Node Manager (slave node) from time to time getting a heartbeat message to the scheduler. Getting the status

message from a Node Manager running on machine, the scheduler divides the use for fixed of phases for the tasks using

the jobs phase-based resource requirement. This improves to reduce job implementation time. This is achieving high

job performance and resource utilization.

Keywords: Big Data, Hadoop, Scheduler, MapReduce, Phase-Based Scheduler

I. INTRODUCTION

Hadoop is an open source under the Apache fund account

component, and is an open source application of Google

graphs calculation model. It can easily develop and run

significant data processing. Two of the most essential part

are HDFS (Hadoop Distributed File System) and Map

Reduce.

A. HDFS

The Hadoop distributed file system (HDFS) to store large

files with streaming data access patterns, to run with

managers-workers mode, that is, there is NR Me Node

(managers) and multiple Data Nodes (workers). Node

manages the file system tree and the tree in all of the files

and directories. Data Node is usually a Node in the cluster,

a record of every file in every block of Data Node

information.

B. MapReduce

MapReduce work process is allocated into two phases. A

map function, which is used to put a set of keys for

mapping into a new set of key-value pairs. And it points to

the Reduce function. MapReduce has four parts: the

framework of homework submission and initialization,

task allocation, task implementation and completion of the

homework. Job Client submits a job, and Job Tracker will

get the job of the information will be sent. Job Tracker is

the canter of the MapReduce formed, which needs to

interconnect with the cluster machine timing (heartbeat),

and need to achieve what programs should be run on

which machines, to achieve job failed, start again

operation. Task Tracker is a measure of every machine in

MapReduce. It is considered to following resources of

their machines. Task Tracker observing tasks run of the

current state of the machine. Task Tracker needs getting s

the information through the heartbeat Job Tracker.

Job Tracker will collect these information to assign new

job submitted a run on which machines.

C. The framework of Hadoop YARN

The framework of Hadoop free services: a global RM and

Application Master of every application. The RM is

responsible for the resource management and allocation of

the whole system, while Application Master responsible

for the management of a single application. YARN

resources on the Node Manager for unified management

and scheduling. YARN is mainly part of the RM, Node

Manager, AM and several Container mechanisms.

II. RELATED WORK

A. Existing System

In existing system, the scheduler executed at the task level.

The original MapReduce work is to schedule the task in

different levels. In a MapReduce method, the group of

jobs and can be scheduled parallel on multiple machines,

resulting in reduction in job running time. In mapper phase

data blocks in HDFS and it maps, merge the data and

stored in the many files. In other hand reducer phase will

fetch data from mapper output and shuffle, sort the data in

a serialized manner.

B. Literature Review

For instance J. Polo, C. Castillo, D. Carrera by [3]

represents this literature existing The principles of RAS

(Resource Adaptive Scheduler) are resource awareness

and constant job executed management. RAS approach

offers a unique resource aware scheduling technique

several ways: Extends the abstraction of „task slot‟ to „job

slot‟. A „job slot‟ is job specific, and has an associated

resource demand profile for MapReduce tasks. Leverages

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5744 223

resource profiling information to get better utilization of

resources and increase application performance. It

familiarizes to changes in resource demand by

dynamically allocating resources to jobs. Also

subsequently M. Zaharia, D. Borthakur, J. [4] by as groups

start to use data intensive cluster work out systems

Hadoop developing need to share clusters among users.

There is an encounter between fairness in scheduling and

information locality. To getting report of the encounter

among locality and fairness, this literature proposes when

the job that should be arranged next allowing to fairness

cannot takeoff a local task, it delays for a small remount of

time, allowing other jobs launch tasks instead. Delay

scheduling is applicable outside fair sharing. This

scheduling only asks that it at times give resources to jobs

out of order to increase data locality.

The generalization of delay scheduling in HFS to

implement a classified scheduling policy. At the top level,

HFS allocates task slots across pools using weighted fair

sharing. M. Isard, V. Prabhakaran, J. Currey, U. Wieder,

and K. Talwar. Proposed by [5] this literature reports the

difficult of scheduling parallel jobs on clusters where

application data is stored on the work out nodes.

In which scheduling working outs close to their data is

central for executed, is more and more common and arises

in systems such as MapReduce, Hadoop, and Dryad as

well as many grid-work out environments. Problem of

arranging with locality and fairness constraints has not

before has widely planned under this typical of resource

sharing.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S.

Shenker and I. Stoica by [6] Resource allocation is a key

building block of any shared computer system. To report

this problem, the system proposes Dominant Resource

Fairness (DRF), a generalization of max-min fairness to

multiple resource types. For every user, DRF work out the

share of every resource allocated to that user. The

maximum among all shares of a user is called that user‟s

dominant share, and the resource matching to the

dominant share is called the dominant resource. Different

users may have different dominant resources.

DRF has the following properties: C. Joe-Wong, S. Sen, T.

Lan, and M. Chiang by [7] This is significant data

equivalent applications such as web indexing, data mining,

and scientific simulation. To improve the execute during

speculative implementation, this literature designs

algorithm for speculative implementation that is strong to

heterogeneity and highly effective in practice. The

proposed algorithm called as LATE for Longest

Approximate Time to End. Subsequently Y. Yu, M. Isard,

D. Fetterly, M. Budiu, U. Erlingsson, P. Gunda, and J.

Currey by [8] proposed. This literature is to exploit this

key observation and explore a new, fine-grained network

reservation abstraction called temporally-interleaved

virtual clusters. By H. Herodotou, H. Lim, G. Luo, N.

Borisov, L. Dong, F. Cetin, and S. Babu [9] Starfish is a

MADDER and analytics on big data. These automatically

select efficient implementation techniques for MapReduce

jobs.

A unique feature of the Sampler is that it can sample the

implementation of a MapReduce job in order to enable the

Profiler to collect approximate job profiles at a fraction of

the full job implementation cost.

III. PROPOSED SYSTEM ARCHITECTURE

A. Resource Manager

RM is a global that is responsible for the resource

management and allocation of the complete system. It is

mainly made up of two components: the Scheduler

(Scheduler) and the application Manager (Applications

Manager, ASM);

B. Application Master

Every application contains 1 RM. There are the main

features: Negotiate with GETTING scheduler for

resources, Tasks within the task assigned to further,

Interconnect with NM to start/stop the task, the Observer

all tasks running state;

C. Node Manager

NM is on every node of resources and task manager. On

the one hand, it will report regularly to the getting this

node on the resource usage and the running state of every

container. On the other hand, it receives and deals with the

Container from RM start/stop and other requests;

D. Container

Container is resource abstraction of the YARN. It

summarizes the multi-dimensional resources on a node,

such as memory, CPU, disk, network and so on. Units new

task, or allow a paused task to begin its next phase (e.g.,

the reduce phase), and then information the Node Manager

about the scheduling decision.

Finally, once the task is allowed to execute the next phase,

the Node Manager grants the getting permission to the task

process. Once the task is finished, the task status is

received by the Node Manager and then promoted to

scheduler. A fine grained, phase-based that every task is at

this time executing.

The job scheduling in phase-based is executed by the RM

in the Master Node, which continues a list of jobs in the

system. The phase-based scheduler will use the delivered

info getting action to make scheduling decisions.

A task will scheduled, the scheduler responses to heartbeat

message with a task scheduling request. The Node

Manager then launches the task. Every time a task finishes

executing a particular phase, the task asks the Node

Manager for getting permission to start the next phase.

The task of every phase is scheduled based on the utility of

that phase. The scheduler allocates a utility value to every

phase which indicates the benefit of scheduling the phase.

The utility function is calculated based on the fairness and

job performance of the particular phase.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5744 224

Fig.1.Proposed Phase-based Scheduler Architecture

IV. SYSTEM BLOCK DIAGRAM

Here present proposed Architecture, a Phase-based

resource-aware scheduler that executed scheduling at

phase-level. Unlike existing MapReduce schedulers that

only allow job owners to specify resource requirements at

task-level, proposed architecture allows the job owners to

specify Phase-based resource requirements. An overview

of the proposed architecture consists of three main

components: a phase-based scheduler at the master node,

local Node Managers that coordinate phase transitions

with the scheduler, and a job progress monitor to capture

phase-based progress information. The phase-based

scheduling mechanism used by proposed block diagrams

is illustrated by Fig.2. [2] Similar to the current Hadoop

implementation, Node Manager from time to time getting

Node Manager then takes-offs the task. Every time a task

finishes executing a particular phase (e.g. shuffle phase of

the reduce task), the task asks the Node Manager for a

getting permission to start the preceding phase (e.g. reduce

phase of the task). Next step the local Node Manager then

forwards the getting permission request to the scheduler

through the regular heartbeat message. Then given a job‟s

phase-based resource requirements and its current progress

info getting action, the scheduler decides whether to start

Fig.2. Implementation Workflow

V. DETAIL DESIGN

A. System Algorithm

System Algorithm Following steps will analysis the

working of the phase scheduling algorithm.

 Step 1: When a task has to be scheduled, the

scheduler replies to the heart beat message with

scheduling request.

 Step 2: The Node Manager then launches the task

implementation. When there is no enough space available

to execute the job that is scheduled, then the application of

the job will be paused.

 Step 3: Now the Node Manager will load the

content that is paused due to the insufficient resources into

the virtual space.

 Step 4: when the actual memory that is demanded

by the Node Manager from phase-base scheduler is

allocated.

 Step 5: The Node Manager will deactivate the

virtual space and load the content into original space.

 Step 6: After finished executing a particular

phase, the task asks getting permission to start the next

phase from the Node Manager.

 Step 7: Then the Node Manager forwards the

request for the getting permission to scheduler through

heart beat message.

 Step 8: If the phase-based resource requirement

and the current progress information are known, the

scheduler decides whether to start the implementation of

new task or paused task to begin next phase, and then this

scheduling decision will be information to Node Manager.

 Step 9: When the application of all task is

completed, the task status is received by Node Manager.

Step 10: Then this task status will be forwarded to

scheduler by Node Manager

B. Mathematical Expression

This scheduling has get work upon receiving a heartbeat

message from the node manager that can be send the

resource availability on the node. In the utility function of

assigning the phase to the system n as there are J Jobs in

system. Each Job consists of two type approach map

tasks M and reduce task R.

 Utility on Fairness

Utility of fairness is calculated based on the Usage of Job

Resource and Capacity of Task Tracker to be executed.

In phase level scheduling, once a task has completed a

phase, the subsequent phase of the task may not be

scheduled immediately if the machine does not have

sufficient resources to run the subsequent phase. Thus, the

Jj

}}),,(),,({:),({
),(niperffairness

UrniUniUnifS

),(),(
),(

niUniUU
perffairnessni

ePerformancJobthepresentsniU

fairnessimprovingforutilitiesthepresentsniU

PahseAssigningi

MachineofNon

Where

perf

fairness

___Re),(

_____Re),(

_

__.

,

r
C

jr
c

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5744 225

execution of a phase may be paused in order to avoid

resource contention, at the cost of delaying the completion

of the task. Therefore, to avoid the delay of task execution,

the utility of fairness is calculated based on the total

capacity of the single machine and the resource usage for

particular task.

 Utility of Performance

Utility on Performance is calculated based on the currently

running map task and reduce tasks and the number of

remaining tasks yet to be executed. The performance of a

job is measured based on the leading phase and non-

leading phase. If the job is a leading phase, the gain of

parallelism is measured in terms of the number of running

map tasks (or reduces tasks). Otherwise if the job is a non-

leading phase, the job performance is measured by the

number of seconds that task has been paused due to phase-

based scheduling.

Map Phase

Number of Pending Map task / Number of Currently

Running Map task

Shuffle Phase

Number of seconds the task has been paused

Reduce Phase

Number of Pending Reduce task / Number of Currently

Running Reduce

VI. SYSTEM IMPLEMENTATION

Here project are divide into five models which are explain

below implemented model

Module 1:Getting Resource Utilization of a node in

Hadoop cluster

Module 2:Utility working out on fairness

Module 3: Utility working out on job Performance

Module 4: Phase-based Scheduling Algorithm

Module 5:Benchmark algorithm Implementation

 Module 1:

Getting Resource Utilization of a node in Hadoop cluster

In MapReduce technique a job is allocated into multiple

tasks and distributes the tasks of a job to a Task Tracker to

be completed, the point of phase-based scheduling

algorithm is to schedule the phase on every map and

reduce task. The application of a map task can be allocated

into two phases: map and merge phases. The Reduce task

allocated into three phases: shuffle, sort, and reduce.

Phase-based scheduling is to run or schedule the phase

based on the resource utilization of that node. The

resource utilization of every node is calculated based on

the top command.

 Module 2:

Utility working out on fairness the fairness of the

scheduling algorithm is improved by reducing the delay

for implementation of every phase. In phase-based

scheduling, once a task has completed a phase, the

subsequent phase of the task may not be scheduled

immediately if the machine does not have sufficient

resources to run the subsequent phase.

Thus, the application of a phase may be paused in order to

avoid resource contention, at the cost of delaying the

completion of the task. Therefore, to avoid the delay of

task implementation, the utility of fairness is calculated

based on the total capacity of the single machine and the

resource usage for particular task.

 Module 3:

Utility working out on job Perform and perform of a job is

measured based on the leading phase and non-leading

phase. If the job is a leading phase, the gain of parallelism

is measured in getting s of the number of running map

tasks (or reduces tasks). Otherwise if the job is a non-

leading phase, the job perform is measured by the number

of seconds that task has been paused due to phase-based

scheduling.

 Module 4:

The phase-based Scheduling Algorithm is a set of phases

that scheduled on a machine; the scheduler allocates a

utility value to every phase which indicates the benefit of

scheduling the phase.

A scheduler allocates the schedule based upon getting the

status message from a Node Manager, the algorithm work

out the utilization of the machine using jobs phase-based

resource requirement. It then works out a set of applicant

phases (i.e. the phases are schedulable on the machine)

and selects phases in an iterative manner.

Each iteration, for every schedulable phase of every job, it

works out the utility function created on the fairness and

job performs. Then it selects phases with the maximum

utility for scheduling and updates the resource utilization

of the mechanism. Afterwards, the algorithm repeats by

recompiling the utility of all the phases in the candidate

set, and select the next best phase to schedule.

 Module 5:

Benchmarks algorithm Implementation to evaluate to

execute of phase-based in Hadoop environment, the

projected system implements the benchmark algorithm.

VII. EVALUATION

A. Experimental Setup and Workload

Here Hadoop cluster using 3 computers connected by

Ethernet. Each node has different processor Memory and

disk which shown in following table. Out of three

machines, one machine was used as Job Tracker where as

other two were used as Task-Trackers.

All machines were running the Ubuntu 12.04 operating

system. We have used Hadoop-0.20.203.0 version which

is considered as current stable version.

r

jr

fairness

C

c
niU),(

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5744 226

Table I. Configuration Parameter of each node

Sr. No CPU Memory Disk

Node A

(Master)

Intel (CR)

Atom™ CPU

N270 @ 1.60

GHZ

2.00 160

GB

Node B

(Slave-1)

Intel (CR)

Pentium ® Dual

Core E2180 @

2.00 GHZ

1.00 GB 160

GB

Node C

(Slave-2)

Pentium ® Dual

Core CPU E5700

@ 3.00 GHZ

2.00 GB 500

GB

B. Result Analysis

To compile the source code based on Hadoop-0.20.203.0

with Intel J Idea and finally, realizes phase-based

scheduler. The compile _le jar is deployed on all nodes.

The benchmark is already included in Hadoop-0.20.203.0,

and Treasury has been used to sort the records on the

Hadoop Cluster nodes. Treasury sort benchmark can

generate computation intensive tasks. That‟s why these

experiments are also based on Treasury benchmark instead

of real-world traces.

 Execution Time of Tasks

To calculated execution time of task choose different

sizes: (1024, 2048, and 3072 MB) of data to sort. The

average numbers of tasks generated by each Task Tracker.

In order to guarantee the fairness of experiments, each set

of data is tested three times.

The experimental results are shown in Table below. As

shown in Fig.1, phase-based scheduling has less execution

time of tasks than both the original task scheduling

algorithm of Hadoop in the heterogeneous Hadoop cluster.

The execution time of tasks is becoming stable since

single tasks are running in the cluster system.

Under the same cluster scale, with the increasing number

of tasks, the performance improvement intuitively shows

that the optimization effect of phase-based scheduler is

obvious, which means that phase-based scheduler can

improve the computing ability of the heterogeneous

Hadoop cluster.

Table II. Configuration Parameter of each node

Algorithm Files(

MB)

The 1
st

Run(s)

The 2
nd

Run(s)

Averag

e(s)

ORIGINAL 1024 598 585 591.5

PRISM 1024 554 560 557

ORIGINAL 2048 1520 1542 1531

PRISM 2048 1468 1485 1476

ORIGINAL 3072 2366 2302 2334

PRISM 3072 2297 2310 2303.5

 Resource Utilization

One of the nodes is randomly selected as the surveillance

object. Meanwhile, 3072-MB input data of Treasury sort

benchmark are also selected to verify the average resource

utilization, including the CPU utilization, the memory

utilization.

The experimental results are shown in Fig.3 below, with

the original task scheduling algorithm; the system causes

high resource utilization all the time while implementing

tasks, particularly the utilization of CPU close to 100%.

The long-term overloaded operation leads the system to

lower efficiency of task execution. The performance of

phase-based scheduler is better than the original task

scheduling algorithm.

Fig.3. Graph for Job Execution of time scheduling

VIII. CONCLUSION

In this paper project is demonstrates that, if the resources

emphasis on task-level, execution of each task may

allocated into Phase-Level. Executing these phases, map

and reduce tasks will adopt information and execute them

in a similar across a large number of machine, so that it

will reduce running time of data-intensive jobs. So they

will perform resource allocation at the phase-level.

This project introduces Phase-Level [1] at the Phase.

Phase-Level consist of how run-time resources can be

used and how it varies over the long life time. Phase-

Level-Improves job execution algorithm-Performance of

resources

REFERENCES

[1] Qi Zhang, Student Member, IEEE, Mohamed FatenZhani,”PRISM:

Fine-Grained Resource-Aware Scheduling for MapReduce” IEEE
Transactions On Cloud Computing, Vol. 3, No. 2, April/June 2015.

[2] Suryakant S. Bhalke,”Survey on Resource Allocation inPhase-

Level using MapReduce in Hadoop” IJSR ISSN (Online): 2319-
7064, Volume 4 Issue 11, November 2015.

[3] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley,Steinder,J.

Torres, and E. Ayguad,Resource-aware adaptive scheduling for
MapReduce clusters, in Proc. ACM/IFIP/USENIX Int. Conf.

Middleware, 2011, pp. 187–207.

[4] M. Zaharia, D. Borthakur, J. SenSarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5744 227

locality and fairness in cluster scheduling,” in Proc. Eur. Conf.

Comput. Syst., 2010, pp. 265–278.
[5] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, and K. Talwar,

“Quincy: Fair scheduling for distributed computing clusters,”in

Proc. ACM SIGOPS Symp. Oper.Syst. Principles, 2009, pp. 261–
276.

[6] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,

and I. Stoica, “Dominant resource fairness: Fair allocation of
multiple resource types,” in Proc. USENIXSymp. Netw. Syst. Des.

Implementation, 2011, pp. 323– 336.

[7] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
Stoica,“Improving MapReduce performance in heterogeneous

environments,” in Proc. USENIX Symp.Oper. Syst. Des.

Implementation, 2008, vol. 8, pp. 29–42.
[8] D. Xie, N. Ding, Y. Hu, and R. Kompella, “The only constant is

change: Incorporating time-varying network reservations in data

centers,” in Proc. ACM SIGCOMM,2012, pp. 199–210.
[9] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. Cetin,

andS. Babu, Starfish: A self-tuning system for big data analytics,”in

Proc. Conf. Innovative Data Syst. Res.,2011, pp. 261–272.
[10] Hadoop MapReduce distribution [Online]. Available:

http://Hadoop.apache.org, 2015.

[11] Hadoop Capacity Scheduler [Online]. Available:
http://Hadoop.apache.org/docs/stable/capacity_scheduler.html/,

2015.

[12] Hadoop Fair Scheduler [Online].
Available:http://Hadoop.apache.org/docs/r0.20.2/fair_scheduler.ht

ml, 2015.

[13] R. Boutaba, L. Cheng, and Q. Zhang, “On cloud
computationalmodels and the heterogeneity challenge,” J.Internet

Serv. Appl.,vol. 3, no. 1, pp. 1–10, 2012.

[14] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy,
andR. Sears, “MapReduce online,” in Proc.USENIX Symp. Netw.

Syst.Des. Implementation, 2010,

[15] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processingon large clusters,” Commun. ACM, vol. 51, no.1, pp.

107–113, 2008.

[16] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. “Multi-resource
allocation: Flexible tradeoffs in a unifying framework,” in Proc.

IEEEInt. Conf.Comput. Commun.,2012, pp. 1206–1214.
[17] A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam, G. Porter, and

A.Vahdat, “ThemisMR: An I/O-Efficient MapReduce,” in

Proc.ACMSymp. Cloud Comput., 2012,
[18] A. Verma, L. Cherkasova, and R. Campbell, “Resource

provisioningframework for MapReduce jobs with

performancegoals,” in Proc. ACM/IFIP/USENIX Int. Conf.
Middleware, 2011,pp. 165–186.

[19] Y. Yu, M. Isard, D. Fetterly, M. Budiu, _ U. Erlingsson, P.

Gunda,and J. Currey, “DryadLINQ: A system for general-purpose
distributeddata-parallel computing using a high-level language,”in

Proc. USENIX Symp. Oper. Syst. Des. Implementation,

2008, pp.1–14.

